Сформулируйте основное уравнение динамики вращательного движения. Основное уравнение динамики вращательного движения. Теория лабораторной работы

Рассмотрим систему материальных точек, каждая из которых может как-то перемещаться, оставаясь в одной из плоскостей, проходящих через общую ось z (рис

Рассмотрим систему материальных точек, каждая из которых может как-то перемещаться, оставаясь в одной из плоскостей, проходящих через общую ось z (рис. 99).

Все плоскости могут вращаться вокруг этой оси с одинаковой угловой скоростью ω.

Согласно формуле (11.6) тангенциальная составляющая скорости i-й точки может быть представлена в виде:

где R i - перпендикулярная к оси z составляющая радиус-вектора r i [ее модуль R i дает расстояние точки от оси z]. Подставив это значение v τ i в формулу (37.4), получим выражение для момента импульса точки относительно оси z:

[мы воспользовались соотношением (11.3); векторы R i , и ω взаимно перпендикулярны].

Просуммировав это выражение по всем точкам и вынеся общий множитель ω за знак суммы, найдем для момента импульса системы относительно оси z следующее выражение:

равная сумме произведений масс материальных точек на квадраты их расстояний от оси z , называется моментом инерции системы материальных точек относительно оси z (отдельно взятое слагаемое представляет собой момент инерции i -й материальной точки относительно оси z ).

С учетом (38.2) выражение (38.1) принимает вид:

которое является основным уравнением динамики вращательного движения. По форме оно сходно с уравнением второго закона Ньютона:

В §35 мы уже отмечали, что абсолютно твердое тело можно рассматривать как систему материальных точек с неизменными расстояниями между ними. Для такой системы момент инерции I z относительно фиксированной оси z есть величина постоянная. Следовательно, уравнение (38. 4) переходит для абсолютно твердого тела в уравнение:

(3 8.5)

где β=ω - угловое ускорение тела, М z , - результирующий момент внешних сил, действующих на тело.

Уравнение (38.5) похоже по форме на уравнение:

Сопоставив уравнения динамики вращательного движения с уравнениями динамики поступательного движения, легко заметить, что при вращательном движении роль силы играет момент силы, роль массы - момент инерции и т. д. (табл. 2)

Таблица 2

Поступательное движение

Вращательное движение

mw=f

p=mv

f – сила

m – масса

v – линейная скорость

w – линейное ускорение

p - импульс

I z β=M z

L z =I z ω

M и M z – момент силы

I z – момент инерции

ω – угловая скорость

β – угловое ускорение

L – момент импульса

Понятия момента силы и момента инерции были нами введены на основе рассмотрения вращения твердого тела. Однако следует иметь в виду, что эти величины существуют безотносительно к вращению. Так, например, любое тело, независимо от того, вращается оно или покоится, обладает определенным моментом инерции относительно любой оси, подобно тому как тело обладает массой независимо от состояния своего движения. Момент силы также существует независимо от того, вращается тело вокруг оси, относительно которой берется момент, или покоится. В последнем случае момент рассматриваемой силы, очевидно, уравновешивается моментами других сил, действующих на тело.

Из уравнения (З8.5) вытекает, что при равенстве нулю результирующего момента всех внешних сил тело вращается с постоянной угловой скоростью. Если момент инерции тела может изменяться вследствие изменения взаимного расположения отдельных частей тела, при М z =0 остается постоянным произведение I z ω [см. (38.4) и изменение момента инерции I z влечет за собой соответствующее изменение угловой скорости ω. Этим объясняется обычно демонстрируемое явление, заключающееся в том, что человек, стоящий на вертящейся скамье, разводя руки в стороны, начинает вращаться медленнее, а, прижимая руки к туловищу, начинает вращаться быстрее.

Рассмотрим систему, состоящую из двух дисков, имеющих общую ось вращения (рис. 100).

Между приливами дисков поместим сжатую пружину и свяжем эти приливы ниткой. Если пережечь нить, то под действием разжавшейся пружины оба диска придут во вращение в противоположных направлениях. Моменты импульса, которые приобретут диски, будут равны по величине, но противоположны по направлению:

так что суммарный момент импульса системы останется по-прежнему равным нулю.

Подобным же образом обстоит дело и в случае изображенной на рис. 101 системы, состоящей из двух дисков с несовпадающими осями, укрепленными в раме, которая может свободно вращаться вокруг оси симметрии системы.

Если пережечь нить, стягивающую приливы на дисках, между которыми заложена сжатая пружина, диски придут во вращение, причем, как легко видеть, в одинаковом направлении. Одновременно рама начнет вращаться в противоположную сторону, так что полный момент импульса системы как целого останется равным нулю.

В обоих рассмотренных выше примерах вращение отдельных частей системы возникало под действием внутренних сил. Следовательно, внутренние силы, действующие между телами системы, могут вызвать изменения моментов импульса отдельных частей системы. Однако эти изменения будут всегда таковы, что суммарный момент импульса системы как целого остается без изменений. Полный момент импульса системы может изменяться только под воздействием внешних сил.

Тема 3.Элементы механики твердого тела.

Лекция №5.

Кинематические соотношения

Определение момента силы.

Момент инерции, момент импульса твёрдого тела.

Кинематические соотношения.

Твердое тело можно рассматривать как систему материальных точек, жестко скрепленных друг с другом. Характер его движения может быть различным.

В основном различают поступательно и вращательное движения .

При поступательном движении все точки тела движутся по параллельным траекториям, так что для описания движения тела в целом достаточно знать закон движения одной точки. В частности, такой точкой может служить центр масс твердого тела

При вращательном (более сложном!) движении все точки тела описывают концентрические окружности, центры которых лежат на одной оси. Скорости точек на любой той окружности связаны с радиусами этих окружностей и угловой скоростью
вращения: . Так как твердое тело при вращении сохраняет свою форму, радиусы вращения остаются постоянными и линейное ускорение будет равно:

. (1)

Определение момента силы.

Для описания динамики вращательного движения твердого тела необходимо ввести понятия моментов силы.

Определение 1.

Моментом – силы – , приложенной к материальной точке т.А , относительно произвольной точки т.О , проведенного из точки т.О к точке т.А :

Примечание.

Модуль векторного произведения, то есть собственно величина момента, определяется произведением – , а направлениемомента даётся определением правой тройки векторов .

Определение 2.

Моментом силы – , приложенной в точке т.А, относительно произвольной оси называется векторное произведение радиуса-вектора и составляющей силы , лежащих в плоскости, перпендикулярной оси и проходящей через точку т.А:

.

Основное уравнение динамики вращательного движения.

Пусть имеется твердое тело произвольной формы, которое может вращаться вокруг оси ОО . Разбивая тело на малые элементы, можно заметить, что все они вращаются вокруг оси ОО в плоскостях, перпендикулярных оси вращения с одинаковой угловой скоростью w .

Движение каждого из отдельных элементов малой массы m i описывается вторым законом Ньютона.

Для i -го элемента имеем:


где f ik (k = 1,2, ...N) представляют собой внутренние силы взаимодействия всех

Элементов с выбранным, а F i - равнодействующая всех внешних сил, действующих на i - элемент.

Скорость v i каждого элемента вообще говоря может меняться как угодно, но поскольку тело является твердым, то смещения точек в направлении радиусов вращения можно не рассматривать. Поэтому спроектируем уравнение (1) на направление касательной к окружности вращения и умножим обе части уравнения на r i :

В правой части получившегося уравнения произведения типа представляют собой моменты внутренних сил относительно оси вращения, т.к. r i и f it взаимно перпендикулярны. Аналогично произведения являются моментами внешних сил, действующих на i -элемент.

Просуммируем в уравнении движения по всем элементам, на которые было разбито тело.

Сумму моментов внутренних сил можно разбить по парам слагаемых, обязанных своим возникновением взаимодействию двух симметричных элементов тела между собой. Их моменты равны и противоположно направлены. На основании этого можно сделать вывод, что при сложении всех моментов внутренних сил они попарно уничтожатся. Суммарный момент всех внешних сил обозначим S М i , где M i = [ r i × F i ].

Левая часть уравнения (2) с учетом соотношения (1) в предыдущем разделе представляется в таком виде:

= = , (3)

где момент инерции.

Уравнение (3) есть основное уравнение вращательного движения .

4.Момент инерции твёрдого тела .

Определение 1.

Величина называется моментом инерции твердого тела относительно заданной оси.


Твердое тело можно представить как совокупность материальных точек. При вращении тела все эти точки имеют одинаковые угловые скорости и ускорения. Используя результаты § 7.6, сравнительно несложно получить уравнение движения твердого тела при его вращении вокруг неподвижной оси.
Уравнение движения
Для вывода основного уравнения динамики вращательного движения можно поступить следующим образом. Разделить мысленно тело на отдельные, достаточно малые элементы, которые можно было бы рассматривать как материальные точки (рис. 7.33). Записать для каждого элемента уравнение (7.6.13), и все эти уравнения почленно сложить. При этом внутренние силы, действующие между отдельными элементами, в уравнение движения тела не войдут. Сумма их моментов в результате сложения уравнений окажется равной нулю, так как по третьему закону Ньютона силы взаимодействия равны по модулю и направлены вдоль одной прямой в противоположные стороны. Учитывая далее, что при вращении твердого тела все его точки совершают одинаковые угловые перемещения с одинаковыми скоростями и ускорениями, можно таким образом получить уравнение вращательного движения всего тела.
Однако вывод этого уравнения довольно громоздок, поэтому мы на нем останавливаться не будем. Тем более что это уравнение имеет такую же форму, что и уравнение (7.6.13) для материальной точки, движущейся по окружности:
О"
О"

(7.7.1)
d(J В этом уравнении JI
щих на тело относительно оси вращения.
Читается уравнение (7.7.1) так: производная по времени от момента импульса равна суммарному моменту внешних сил.
Следует иметь в виду, JITO вращение тела вокруг оси могут вызывать лишь силы Ft, лежащие в плоскости, перпендикулярной оси вращения (рис. 7.34). Силы же Fk, направленные параллельно оси вращения, очевидно, способны вызвать лишь перемещение тела вдоль оси. Момент каждой силы Fl равен взятому со знаком плюс или минус произведению модуля этой силы на плечо d, т. е. на длину отрезка перпендикуляра, опу-щенного из точки С оси на линию действия силы Ft:
Mi = ±Ftd. (7.7.2)
Момент силы, вращающий тело вокруг данной оси против часовой стрелки, считается положительным, а по часовой стрелке - отрицательным.
Момент инерции тела
В формулу (7.7.1) входит момент инерции тела J. Момент инерции тела J равен сумме моментов инерции AJ- отдельных малых элементов, на которые можно разбить все тело:
(7.7.3)
і
Так как момент инерции материальной точки
AJ^Amtf, (7.7.4)
где Атпі - масса элемента тела, а г, - его расстояние до оси вращения (см. рис. 7.33), то
J = J A mtrf . (7.7.5)
385
13-Мякишев, 10 кл.
Момент инерции тела зависит не только от массы тела, но и от характера распределения этой массы. Чем больше вытянуто
Рис. 7.35
тело вдоль оси вращения, тем меньше его момент инерции, так как тем ближе к оси вращения расположены отдельные элементы тела. Очевидно также, что, изменив ось вращения тела, мы тем самым изменим и его момент инерции. У твердых тел момент инерции относительно данной оси - постоянная величина. Поэтому изменение момента импульса может происходить лишь за счет изменения угловой скорости. Соответственно уравнение (7.7.1) можно записать в виде:
jft = М. (7.7.6)
Читается это уравнение так: произведение момента инерции тела относительно оси вращения на угловое ускорение тела равно сумме моментов (относительно той же оси) всех внешних сил, приложенных к телу.
Уравнение (7.7.6) показывает, что при вращении тела момент инерции играет роль массы, момент силы - роль силы, а угловое ускорение - роль линейного ускорения при движении материальной точки или центра масс.
В том, что угловое ускорение определяется действительно моментом силы, т. е. силой и плечом, а не просто силой, убедиться нетрудно. Так, раскрутить велосипедное колесо до одной и той же угловой скорости одной и той же силой (напри-мер, усилием пальца) можно гораздо быстрее, если прикладывать силу к ободу колеса (это создает больший момент), а не к спицам вблизи втулки (рис. 7.35).
Для того чтобы убедиться в том, что угловое ускорение определяется именно моментом инерции, а не массой тела, нужно иметь в распоряжении тело, форму которого можно легко изменять, не меняя массы. Велосипедное колесо здесь непригодно. Но можно воспользоваться своим собственным телом. Попробуйте закрутиться на пятке, оттолкнувшись от пола другой ногой. Если вы при этом прижмете руки к груди, то угловая скорость окажется большей, чем если вы раскинете руки в стороны. Эффект будет особенно заметным, если в обе руки взять по толстой книге.
Моменты инерции обруча и цилиндра
Найти момент инерции тела произвольной несимметричной формы довольно сложно. Проще его измерить опытным путем, чем вычислить.
Мы ограничимся вычислением момента инерции тонкого обруча, вращающегося вокруг оси, проходящей через его центр. Если масса колеса сосредоточена главным образом в его ободе (как, например, у велосипедного колеса), то такое колесо приближенно можно рассматривать как обруч, пренебрегая массой спиц и втулки.
Разобьем обруч на N одинаковых элементов. Если т - масса всего обруча, то масса каждого элемента Дmi = ^ . Толщину
обруча будем считать много меньшей ее радиуса (рис. 7.36). Если число элементов выбрать достаточно большим, то каждый элемент можно рассматривать как материальную точку. Поэтому момент инерции произвольного элемента с номером і будет равен:
Д Jt = Дт;Д2. (7.7.7)
Подставляя выражение (7.7.7) в формулу (7.7.5) для полного момента инерции, получим:
N
(7.7.8)
J= Д^Д miR2 = mR2.

Рис. 7.36
Здесь мы учли, что расстояние R для всех элементов одинаково и что сумма
масс элементов равна массе т об-
I
руча.
13*
387
Получился очень простой результат: момент инерции обруча равен произведению его массы на квадрат радиуса. Момент инерции обруча данной массы тем больше, чем больше его радиус. Формула (7.7.8) определяет также момент инерции
полого тонкостенного цилиндра при его вращении вокруг оси симметрии.
Вычисление момента инерции сплошного однородного цилиндра массой тп и радиусом R относительно его оси симметрии представляет более сложную задачу. Мы приведем лишь результат расчета: (7.7.9)
J =\ mR2. Следовательно, если сравнить моменты инерции двух цилиндров одинакового размера и массы, один из которых полый, а другой сплошной, то у второго цилиндра момент инерции будет в два раза меньше. Это связано с тем, что у сплошного цилиндра масса расположена в среднем ближе к оси вращения.
Мы познакомились с уравнением вращательного движения твердого тела. По форме оно похоже на уравнение для поступательного движения твердого тела. Дано определение новых физических величин, характеризующих твердое тело: момента инерции и момента импульса.

Твердого тела вокруг неподвижной оси.

Момент импульса твердого тела при вращательном движении вокруг оси z вычисляется как

Тогда уравнение динамики вращательного движения примет вид:

Если тело твердое, то , поэтому, с учетом того, что (угловое ускорение), получаем выражение

Это уравнение динамики вращательного движения твердого тела вокруг неподвижной оси :

угловое ускорение вращательного движения твердого тела вокруг неподвижной оси прямо пропорционально величине момента внешних сил относительно этой оси .

Замечание . По аналогии со вторым законом Ньютона, в котором ускорение определяется силой, уравнение динамики вращательного движения твёрдого тела дает связь между угловым ускорением и моментом силы. В этом смысле момент инерции тела играет роль меры инертности при вращательном движении .

Примеры вычисления моментов инерции.

1) Момент инерции тонкого кольца (прямого тонкостенного цилиндра) массы m и радиуса R относительно оси z, перпендикулярной плоскости кольца, проходящей через центр кольца

2) Момент инерции диска (сплошного цилиндра) массы m и радиуса R относительно оси z, перпендикулярной к плоскости диска, проходящей через центр диска (сплошного цилиндра).

Выделим тонкий цилиндр радиусом r и толщиной dr .

Масса этого цилиндра , .

3) Момент инерции тонкого стержня относительно оси z, являющейся срединным перпендикуляром. Масса стержня m, длина L.

Выделим на расстоянии x от оси маленькую часть стержня длиной dx.

Масса этой части и . Поэтому

.

4) Момент инерции тонкостенного шара относительно любой оси симметрии z. Масса шара m, радиус R.

Выделим на поверхности сферы кольцевой сегмент, для которого ось z является осью симметрии. Сегмент опирается на малый центральный угол dj, положение сегмента определяется углом j, отсчитываемым от плоскости экватора, перпендикулярной оси z.

Тогда радиус кольца ,

его масса , поэтому

или

5) Момент инерции сплошного шара относительно любой оси симметрии z. Масса шара m, радиус шара R.

Представим шар как набор вложенных друг в друга тонкостенных сфер переменного радиуса r и толщиной dr . Масса одной такой сферы .

Момент инерции такой сферы .

.

Теорема Гюйгенса-Штейнера

Как связаны между моменты инерции твердого тела относительно двух параллельных осей?

Рассмотрим две параллельные оси z 1 и z 2 . Введем две системы координат так, чтобы их оси х и у были параллельны друг другу, причем вторая система координат была получена параллельным переносом из первой на вектор, перпендикулярный осям z 1 и z 2 . Тогда расстояние между осями будет равно .

В этом случае координаты любой i- й малой частицы тела связаны соотношениями

Квадрат расстояния от этой точки до первой оси z 1:

и до второй оси z 2 .

Вычисляем момент инерции относительно второй оси:

В этом равенстве

Момент инерции тела относительно оси z 1 ,

Учтём, что и (где x 1С и y 1С – координаты центра масс тела в 1й системе координат) и получим

Если предположить, что ось z 1 проходит через центр масс тела , то x 1С =0 и y 1С =0, поэтому в этом случае выражение упрощается:

Это выражение носит название теоремы Гюйгенса-Штейнера : момент инерции твердого тела относительно произвольной оси равен сумме момента инерции тела относительно параллельной оси, проходящей через центр масс тела и квадрата расстояния между осями, умноженного на массу тела .

Пример . Момент инерции стрежня относительно оси, проходящей через край стержня, перпендикулярно ему, равен сумме момента инерции относительно срединной оси и массе, умноженный на квадрат половины длины стержня:

.

Пример . Рассмотрим движение грузов на невесомой нерастяжимой нити, перекинутой через блок (диск). Массы грузов m 1 и m 2 (m 1 < m 2), масса блока m. Трения в оси блока нет. Нить не скользит по блоку. Силами сопротивления в воздухе пренебрегаем. Найти ускорение грузов. Радиус блока R.

Решение . Фиксируем систему отсчета, в которой ось блока неподвижная. Предполагаем, что эта система отсчета инерциальная. Ось z системы координат в этой системе отсчёта направим вдоль оси вращения блока («от нас»).

«Мысленно» разбиваем систему на части и находим силы между частями системы в соответствие со вторым и третьим законами Ньютона.

При этом учтём, что нить невесомая (масса любой части нити равна нулю), поэтому, если кусок нити движется под действием (растягивающих) сил, то из второго закона Ньютона

Динамика вращательного движения твердого тела.

    Момент инерции.

    Момент силы. Основное уравнение динамики вращательного движения.

    Момент импульса.

    Момент инерции.

(Рассмотрим опыт со скатывающимися цилиндрами.)

При рассмотрении вращательного движения необходимо ввести новые физические понятия: момент инерции, момент силы, момент импульса.

Момент инерции является мерой инертности тела при вращательном движении тела вокруг неподвижной оси.

Момент инерции материальной точки относительно неподвижной оси вращения равен произведению её массы на квадрат расстояния до рассматриваемой оси вращения (рис.1):

Зависит только от массы материальной точки и её положения относительно оси вращения и не зависит от наличия самого вращения.

Момент инерции - скалярная и аддитивная величина

Момент инерции тела равен сумме моментов инерции всех его точек

.

В случае непрерывного распределения массы эта сумма сводится к интегралу:

,

где - масса малого объема тела ,  плотность тела, - расстояние от элемента до оси вращения.

Момент инерции является аналогом массы при вращательном движении. Чем больше момент инерции тела, тем труднее изменить угловую скорость вращаемого тела. Момент инерции имеет смысл только при заданном положении оси вращения.

Бессмысленно говорить просто о “моменте инерции”. Он зависит:

1)от положения оси вращения;

2)от распределения массы тела относительно оси вращения, т.е. от формы тела и его размеров.

Экспериментальным доказательством этого является опыт со скатывающимися цилиндрами.

Произведя интегрирование для некоторых однородных тел, можно получить следующие формулы (ось вращения проходит через центр масс тела):

    Момент инерции обруча (толщиной стенок пренебрегаем) или полого цилиндра:


    Момент инерции диска или сплошного цилиндра радиуса R:


    Момент инерции шара


    Момент инерции стержня


Если для тела известен момент инерции относительно оси, проходящей через центр масс, то момент инерции относительно любой оси, параллельной первой, находится по теореме Штейнера : момент инерции тела относительно произвольной оси равен моменту инерции J 0 относительно оси, параллельной данной и проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между осями.

где d расстояние от центра масс до оси вращения.

Центр масс - воображаемая точка, положение которой характеризует распределение массы данного тела. Центр масс тела движется так же, как двигалась бы материальная точка той же массы под действием всех внешних сил, действующих на данное тело.

Понятие момента инерции было введено в механику отечественным ученым Л. Эйлером в середине XVIII века и с тех пор широко используется при решении многих задач динамики твердого тела. Значение момента инерции необходимо знать на практике при расчете различных вращающихся узлов и систем (маховиков, турбин, роторов электродвигателей, гироскопов). Момент инерции входит в уравнения движения тела (корабля, самолета, снаряда, и т.п.). Его определяют, когда хотят узнать параметры вращательного движения летательного аппарата вокруг центра масс при действии внешнего возмущения (порыва ветра и т.п.). Для тел переменной массы (ракеты) с течением времени изменяется масса и момент инерции.

2 .Момент силы.

Одна и та же сила может сообщать вращающемуся телу разные угловые ускорения в зависимости от её направления и точки приложения. Для характеристики вращающего действия силы вводят понятие момента силы.

Различают момент силы относительно неподвижной точки и относительно неподвижной оси. Моментом силы относительно точки О (полюса) называется векторная величина, равная векторному произведению радиус-вектора проведенного из точки О в точку приложения силы, на вектор силы:

Поясняющий это определение рис. 3 выполнен в предположении, что точка О и вектор лежат в плоскости чертежа, тогда вектор так же располагается в этой плоскости, а вектор  к ней и направлен от нас (как векторное произведение 2-х векторов; по правилу правого буравчика).

Модуль момента силы численно равен произведению силы на плечо:

где - плечо силы относительно точки О,  - угол между направлениями и, .

Плечо - кратчайшее расстояние от центра вращения до линии действия силы.

Вектор момента силы сонаправлен с поступательным движением правого буравчика, если его рукоятку вращать по направлению вращающего действия силы. Момент силы - аксиальный (свободный) вектор, он направлен вдоль оси вращения, не связан с определенной линией действия, его можно переносить в

пространстве параллельно самому себе.

Моментом силы относительно неподвижной оси Z называется проекция вектора на эту ось (проходящую через точку О).

Если на тело действуют несколько сил, то результирующий момент сил относительно неподвижной оси Z равен алгебраической сумме моментов относительно этой оси всех сил, действующих на тело.

Если сила, приложенная к телу, не лежит в плоскости вращения, её можно разложить на 2 компоненты: лежащую в плоскости вращения и  к ней F n . Как видно из рисунка 4, F n вращения не создает, а приводит только к деформации тела; вращение тела обусловлено только составляющей F  .

Вращающееся тело можно представить как совокупность материальных точек.

Выберем произвольно некоторую точку с массой m i , на которую действует сила, сообщая точке ускорение (рис. 5). Поскольку вращение создает только тангенциальная составляющая, для упрощения вывода направлена перпендикулярно оси вращения.

В этом случае

Согласно второму закону Ньютона: . Умножим обе части равенства на r i ;

,

где - момент силы, действующей на материальную точку,

Момент инерции материальной точки.

Следовательно, .

Для всего тела: ,

т.е. угловое ускорение тела прямо пропорционально моменту действующих на него внешних сил и обратно пропорционально его моменту инерции. Уравнение

(1) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси, или второй закон Ньютона для вращательного движения.

3 . Момент импульса.

При сравнении законов вращательного и поступательного движений усматривается аналогия.

Аналогом импульса является момент импульса. Понятие момента импульса также можно ввести относительно неподвижной точки и относительно неподвижной оси, однако в большинстве случаев его можно определить следующим образом. Если материальная точка вращается вокруг неподвижной оси, то её момент импульса относительно этой оси по модулю равен

где m i - масса материальной точки,

 i - её линейная скорость

r i - расстояние до оси вращения.

Т.к. для вращательного движения

где - момент инерции материальной точки относительно этой оси.

Момент импульса твердого тела относительно неподвижной оси равен сумме моментов импульсов всех его точек относительно этой оси:

где - момент инерции тела.

Т.о., момент импульса твердого тела относительно неподвижной оси вращения равен произведению его момента инерции относительно этой оси на угловую скорость и сонаправлен с вектором угловой скорости.

Продифференцируем уравнение (2) по времени:

Уравнение (3) - ещё одна форма основного уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента

импульса твердого тела относительно неподвижной оси вращения равна моменту внешних сил относительно той же оси

Это уравнение является одним из важнейших уравнений ракетодинамики. В процессе движения ракеты положение ее центра масс непрерывно изменяется, вследствие чего возникают различные моменты сил: лобового сопротивления, аэродинамической силы, сил создаваемых рулем высоты. Уравнение вращательного движения ракеты под действием всех приложенных к ней моментов сил совместно с уравнениями движения центра масс ракеты и уравнениями кинематики с известными начальными условиями позволяют определить положение ракеты в пространстве в любой момент времени.