Абсолютное пространство. Становление субстанциональной концепции пространства и времени ньютона Согласно утверждениям ньютона время бывает

Вопросы пространства и времени всегда интересовали человеческое общество. Одна из концепций этих понятий идет от древних атомистов – Демокрита, Эпикура и др.
Размещено на реф.рф
Они ввели в научный оборот понятие пустого пространства и рассматривали ᴇᴦο как однородное и бесконечное.

В процессе создания общей картины мироздания Исаак Ньютон (1642–1726), конечно, также не мог обойти вопрос понятия пространства и времени.

По Ньютону, мир состоит из материи, пространства и времени. Данные три категории независимы друг от друга. Материя размещается в бесконечном пространстве. Движение материи происходит в пространстве и времени. Ньютон разделял пространство на абсолютное и относительное. Абсолютное пространство неподвижно, бесконечно. Относительное – это часть абсолютного. Так же он классифицировал и время. Подабсолютным, истинным (математическим) временем он понимал время, которое течет всегда и везде равномерно, а относительное время, по Ньютону, есть мера продолжительности, которая существует в реальной жизни˸ секунда, минута, час, сутки, месяц, год. У Ньютона абсолютное время существует и длится равномерно само по себе, безотносительно к каким-либо событиям. Абсолютное пространство и абсолютное время представляют из себявместилище всех материальных тел и пространств и не зависят ни от этих тел, ни от этих процессов, ни друг от друга.

Массу Ньютон определяет как количество материи и вводит понятие ʼʼпассивной силыʼʼ (силы инерции) и ʼʼактивной силыʼʼ, создающей движение тел.

Изучив и выявив закономерности движения, Ньютон таким образом сформулировал ᴇᴦο законы˸

1– й закон. Всякому телу продолжать свое состояние покоя или равномерного прямолинейного движения, поскольку оно не принуждается приложенными силами изменять это состояние.

2– й закон. Изменению движения быть пропорциональным приложенной движущей силе и происходить по направлению той прямой, по которой эта сила действует.

3– й закон. Действию всегда встречать равное противодействие, или воздействию двух тел друг на друга быть между собой равными и направленными в противоположные стороны.

В наше время знаменитые законы формулируются в более удобной форме˸

1. Всякое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ᴇᴦο изменить это состояние. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон называют также законом инерции.

Ньютоновская концепция абсолютного пространства и времени. Законы движения - понятие и виды. Классификация и особенности категории "Ньютоновская концепция абсолютного пространства и времени. Законы движения" 2015, 2017-2018.

В 1687 г. вышел основополагающий труд Ньютона «Математические начала натуральной философии». Этот труд более чем на два столетия определил развитие всей естественно-научной картины мира. В нем были сформулированы основные законы движения и дано определение понятий пространства, времени, места и движения.Раскрывая сущность времени и пространства, Ньютон характеризует их как «вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве - в смысле порядка положения». Он предлагает различать два типа понятий пространства и времени: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) и дает им следующую типологическую характеристику.

Абсолютное, истинное, математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длите - Относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами, внешняя мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год.

Абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным. - Относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное.Из определений Ньютона следовало, что разграничение им понятий абсолютного и относительного пространства и времени связано со спецификой теоретического и эмпирического уровней их познания. На теоретическом уровне классической механики абсолютное пространство и время играли существенную роль во всей причинной структуре описания мира. Они выступали в качестве универсальной инерциальной системы отсчета, так как законы движения классической механики справедливы в инерциальных системах отсчета. На уровне эмпирического познания материального мира понятия «пространство» и «время» ограничены чувствами и свойствами познающей личности, а не объективными признаками реальности как таковой. Поэтому они выступают в качестве относительного времени и пространства.

12 общая теория относительности эйнштейна. ее положения и значение для развития представлений о вселенной и материи.понятия пространства и времени по Эйнштейну. Релятивистская модель Вселенной-

В начале XX в. кризис в физике разрешается с созданием двух новь способов физического познания - релятивистского и квантового. На i основе формируется неклассическая физика и новая, современная физическая картина мира. В начале XX в. на смену классической механике пришла новая фундаментальная теория - специальная теория относительности (СТО). Созданная усилиями ряда ученых, прежде всего А. Эйнштейна, она позволила непротиворечиво объяснить многие физические явления, которые не укладывались в рамки классических представлений. В первую очередь это касалось закономерностей электромагнитных явлений в движущихся телах. Создание теории электромагнитного поля и экспериментальное доказательство его реальности поставили перед физиками задачу выяснить, распространяется ли принцип относительности движения (сформулированный еще Галилеем), справедливый для механических явлений, на явления, присущие электромагнитному полю. Во всех инерциальных системах (т.е. движущихся прямолинейно и равномерно друг по отношению к другу) применимы одни и те же законы механики. Но справедлив ли принцип, установленный для механических движений материальных объектов, для немеханических явлений, особенно тех, которые представлены полевой формой материи, в частности электромагнит Во второй половине XX в. основное внимание физиков обращено на создание теорий, раскрывающих с позиций квантово-релятивистских представлений сущность и основания единства четырех фундаментальных взаимодействий - электромагнитного, «сильного», «слабого» и гравитационного. Эта задача одновременно является и задачей создания единой теории элементарных частиц (теории структуры материи). В последние десятилетия созданы и получили эмпирическое обоснование квантовая электродинамика, теория электрослабого взаимодействия, квантовая хромодинамика (теория сильного взаимодействия). Есть перспективы создания единой теории электромагнитного, «слабого» и «сильного» взаимодействий. Физики ожидают, что в отдаленной перспективе к ним должно быть присоединено и гравитационное взаимодействие. Таким образом, естествознание в настоящее время находится на пути к реализации великой цели - созданию единой теории структуры материи.


13 Спустя почти 40 лет после работ Лобачевского, в 1867 г. была опубликована работа Римана «О гипотезах, лежащих в основании геометрии». Опираясь на идею о возможности геометрии, отличной от евклидовой, Риман подошел к этому вопросу с несколько иных позиций, чем Лобачевский. Он вводит обобщенное понятие пространства как непрерывного многообразия п-го порядка или совокупности однородных объектов - точек, определяемых системой чисел (x1, х2,..., хn). Используя работы Гаусса по геометрии поверхностей в обычном трехмерном пространстве, Риман вводит для характеристики многообразия n-го порядка понятие расстояния между бесконечно близкими точками ds и понятие кривизны для каждой точки этого многообразия. В искривленном пространстве нет прямых линий, а свойства геометрических фигур другие, чем на плоскости. Прямая заменена здесь линиями, которые являются кратчайшими расстояниями между точками. С точки зрения Римана, вопрос о том, является ли геометрия нашего физического пространства евклидовой, что соответствует его нулевой кривизне, или эта кривизна не равна нулю, должен решить эксперимент. При этом он допускает, что свойства пространства должны зависеть от материальных тел и процессов, которые в нем происходят.Кроме того, Риман высказал новое понимание бесконечности пространства. По его мнению, пространство нужно признать неограниченным; однако если оно может иметь положительную постоянную кривизну, то оно уже не бесконечно, подобно тому как поверхность сферы хотя и не ограничена, но тем не менее ее размеры не являются бесконечными. Так зарождалось представление о разграничении бесконечности и безграничности пространства (и времени). 14 Эйнштейн в теория относительности отрицает конкретность пространства, тем самым «оно не создается из мира, но только затем уже привносится задним числом и именно в метрику четырехмерного многообразия, которое возникает благодаря тому, что пространство и время связаны в единый (четырехмерный) континуум посредством скорости света» (Макс Планк). Вообще существует две теории относительности:

1. Специальная: В ней были объединены понятия движение, пространство и время. Они как свойства материальных объектов меняются от скорости их движения. Не существует единой системы координат, и было введено понятие – пространственно-временной интервал – это величина, которая не меняется при переходе от одной системы отсчета к другой. Этот интервал позволяет изменяться пространству и времени в разных направлениях, что позволяет ему оставаться постоянным.

2. Общая теория относительности: связала в едино понятия тяготеющей массы, пространства и времени. Ритм времени замедляется. Пространство искривляется под действием поля тяготения. Наблюдения во время солнечных затмений показали, что пространство искривляется. Из этого были сделаны следствия на основе геометрии Лобачевского (отрицательная кривизна) и Римана (положительная кривизна), что при положительном искривлении пространства вселенная замкнута, а при отрицательном вселенная бесконечна.

15 Теоретическое моделирование имеет важное значение для выяснения прошлого и будущего наблюдаемой Вселенной. В 1922 г. А.А. Фридман занялся разработкой оригинальной теоретической модели Вселенной. Он предположил, что средняя плотность не является постоянной, а меняется с течением времени. Фридман пришел к выводу, что любая достаточно большая часть Вселенной, равномерно заполняемая материей не может находиться в состоянии равновесия: она должна либо расширяться, либо сжиматься. Еще в 1917 г. В.М. Слайдер обнаружил «красное смещение» спектральных линий в спектрах далёких галактик. Подобное смещение наблюдается тогда, когда источник света удаляется от наблюдателя. В 1929 г. Э. Хаббл объяснил это явление взаимным разбеганием этих звездных систем. Явление «красного смещения» наблюдается в спектрах почти всех галактик, кроме ближайших (нескольких). И чем дальше от нас галактика, тем больше сдвиг линий в её спектре, т.е. все звездные системы удаляются от нас с огромными скоростями в сотни, тысячи десятки тысяч километров в секунду, более далекие галактики обладают и большими скоростями. А после того, как эффект «красного смещения» был обнаружен и в радиодиапазоне, то не осталось, никаких сомнений в том, что наблюдаемая Вселенная расширяется. В настоящее время известны галактики, удаляющиеся от нас со скоростью 0,46 скорости света. А сверхзвезды и квадры – 0,85 скорости света. На галактики постоянно действует какая-то сила. В отдаленном прошлом материя в нашей области Вселенной находилась в сверхплотном состоянии. Затем произошел «взрыв», в результате которого и началось расширение. Чтобы выяснить дальнейшую судьбу метагалактики, необходимо оценить среднюю плотность межзвездного газа. Если она выше 10 протонов на 1м3, то общее гравитационное поле метагалактики достаточно велико, чтобы постепенно остановить расширение. И оно смещается сжатием.

16 В 1913 г. Резерфорд ставит опыт, результаты которого модель Томсона объяснить не может.Это заставляет Резерфорда предложить свою модель строения атома, получившую название планетарной. Согласно этой модели атом состоит из ядра, в котором сконцентрирована основная масса атома, поскольку ядро содержит протоны и нейтроны; вокруг ядра на огромной скорости вращаются электроны. Поскольку модель Резерфорда содержала ряд противоречий, Н.Бором были введены постулаты, устраняющие эти противоречия.

1-й постулат. Электроны вращаются вокруг ядра не по произвольным, а по строго определенным, стационарным орбитам.

2-й постулат. При движении по стационарной орбите электрон не излучает и не поглощает энергию. Изменение энергии происходит при переходе электрона с одной стационарной орбиты на другую.

Но теория Резерфорда–Бора дает удовлетворительные результаты только для атома водорода. Современные представления о строении атома подчиняются квантовой модели строения атома, которая учитывает волновые свойства элементарных частиц. Приведем ее основные положения.

Электрон имеет двойственную (корпускулярно-волновую) природу, т.е. ведет себя и как частица, и как волна. Как частица, электрон обладает массой и зарядом; как волна, он обладает способностью к дифракции.

Для электрона невозможно одновременно точно измерить координату и скорость.

Электрон в атоме не движется по определенным траекториям, а может находиться в любой части околоядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Область пространства, где вероятнее всего находится электрон, называется орбиталью*.

Ядра атомов состоят из протонов и нейтронов, имеющих общее название – нуклоны 17 Элементарные частицы. Протон, нейтрон, позитрон. Атом состоит из мельчайших частиц, называемых элементарными частицами. Протон - самая тяжелая элементарная частица, ядро атома водорода, заряжен положительно. Нейтрон - обладает почти такой же массой как протон, но электрически нейтральна, входит в состав всех атомных ядер. Позитрон - положительно заряженная частица. (обладающая такими же свойствами, что и электрон).- античастица электрона. 18 В рамках квантово-полевой картины мира сложились квантово-полевые представления о материи:

Материя обладает корпускулярно-волновыми свойствами, то есть каждый элемент материи имеет свойства волны и частицы.

Движение – частный случай физического взаимодействия. Фундаментальные физические взаимодействия: сильное, электромагнитное, слабое. Гравитационное. Они описываются на основе принципа близкодействия: взаимодействия передаются от точки к точке. Скорость передачи взаимодействия конечна и не превышает скорости света.

Картина физической реальности в квантовой механике двупланова: с одной стороны, в нее входят характеристики исследуемого объекта; с другой стороны – условия (наблюдения), от которых зависит определенность этих характеристик.

Спецификой квантово-полевых представлений о закономерностях и причинности является то, что они выступают в вероятностной форме, в виде статистических законов.

При описании объектов используются две категории понятий: пространственно-временные и энергетически-импульсные. Первые дают кинематическую картину движения, вторые – динамическую (причинную). Пространство - время и причинность относительны и взаимозависимы

Фундаментальные положения квантовой теории: принцип неопределенности и принцип дополнительности 19 Сложившиеся к началу XIX в. представления о строении материи были односторонними и не давали возможности объяснить ряд экспериментальных факторов. Разработанная М. Фарадеем и Дж. Максвеллом в XIX в. теория электромагнитного поля показала, что признанная концепция не может быть единственной для объяснения структуры материи. В своих работах М. Фарадей и Дж. Максвелл показали, что поле - это самостоятельная физическая реальность.

Таким образом, в науке произошла определенная переоценка основополагающих принципов, в результате которой обоснованное И. Ньютоном дальнодействие заменялось близкодействием, а вместо представлений о дискретности выдвигалась идея непрерывности, получившая свое выражение в электромагнитных полях.

Вся обстановка в науке в начале XX в. складывалась так, что представления о дискретности и непрерывности материи получили свое четкое выражение в двух видах материи: веществе и поле, различие между которыми явно фиксировалось на уровне явлений микромира. Однако дальнейшее развитие науки в 20-е гг. показало, что такое противопоставление является весьма условным.

20 Раскрывая сущность пространства и времени, Ньютон предлагает различать два вида понятий: абсолютные (истинные, материалистические) и относительные (кажущиеся, обыденные) и дает им следующую типологическую характеристику:

* абсолютное, истинное, материалистическое время само по себе и своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью.

* относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами внешняя мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как то: час, день, месяц, год...

Абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным.

Относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное.

Пространство и время в классической механике И. Ньютона.

В 1687 г. вышел основополагающий труд Ньютона «Математические начала натуральной философии». Этот труд более чем на два столетия определил развитие всей естественно-научной картины мира. В нем были сформулированы основные законы движения и дано определение понятий пространства, времени, места и движения.

Раскрывая сущность времени и пространства, Ньютон характеризует их как «вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве - в смысле порядка положения». Он предлагает различать два типа понятий пространства и времени: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) и дает им следующую типологическую характеристику.

  • Абсолютное, истинное, математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью.
  • Относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами, внешняя мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год.
  • Абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным.
  • Относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное.

Из определений Ньютона следовало, что разграничение им понятий абсолютного и относительного пространства и времени связано со спецификой теоретического и эмпирического уровней их познания. На теоретическом уровне классической механики абсолютное пространство и время играли существенную роль во всей причинной структуре описания мира. Они выступали в качестве универсальной инерциальной системы отсчета, так как законы движения классической механики справедливы в инерциальных системах отсчета. На уровне эмпирического познания материального мира понятия «пространство» и «время» ограничены чувствами и свойствами познающей личности, а не объективными признаками реальности как таковой. Поэтому они выступают в качестве относительного времени и пространства.

Пространство и время в теории относительности А. Эйнштейна.

А. Эйнштейн отказался от представлений классической механики. Согласно представлению Эйнштейна, каждое движение тела происходит относительно определённого тела отсчёта, поэтому все физические процессы и законы должны формулироваться по отношению к точной системе отсчёта, следовательно, не существует никакого абсолютного пространства и времени. Он впервые связывает обособленные в классической механике понятия пространства и времени в понятие пространственно-временной непрерывности (континуум).

Теория относительности рассматривает наш мир как четырёхмерный, где тремя координатами x, y, z описывают пространство, а четвёртой – t – время.

До 1915 г. пространство и время воспринимались как некая жесткая арена для событий, на которую все происходящее на ней никак не влияет. Так обстояло дело даже в специальной теории относительности. Тела двигались, силы притягивали и отталкивали, но время и пространство просто оставались самими собой, их это не касалось. И было естественно думать, что пространство и время бесконечны и вечны.

В общей же теории относительности А. Эйнштейнаситуация совершенно иная. Пространство и время теперь динамические величины: когда движется тело или действует сила, это изменяет кривизну пространства и времени, а структура пространства-времени в свою очередь влияет на то, как движутся тела и действуют силы. Пространство и время не только влияют на все, что происходит во Вселенной, но и сами изменяются под влиянием всего в ней происходящего. Как без представлений о пространстве и времени нельзя говорить о событиях во Вселенной, так в общей теории относительности стало бессмысленным говорить о пространстве и времени за пределами Вселенной.

В последующие десятилетия новому пониманию пространства и времени предстояло произвести переворот в наших взглядах на Вселенную. Старое представление о почти не меняющейся Вселенной, которая, может быть, всегда существовала и будет существовать вечно, сменилось картиной динамической, расширяющейся Вселенной, которая, по-видимому, возникла когда-то в прошлом и, возможно, закончит свое существование когда-то в будущем.

Пространство – форма бытия материи, характеризующая её протяжённость, структурность, сосуществование и взаимодействие во всех материальных системах.

Время характеризует последовательность смены состояний и длительность бытия любых объектов и процессов, внутреннюю связь сменяющихся и сохраняющихся состояний.

Общие свойства пространства и времени:

  • объективность – т.е. существуют независимо от сознания людей и познания ими этой объективной реальности;
  • абсолютность – вытекает из признания тезиса о том, что бытие вне времени есть такая же бессмыслица, как и бытие вне пространства;
  • относительность – человеческие представления о пространстве и времени относительны; из этих относительных представлений складывается абсолютная истина;
  • бесконечность.

Общие свойства пространства:

  • протяженность;
  • связанность и непрерывность – между двумя различными точками в пространстве, как близко бы они не находились, всегда есть третья;
  • трёхмерность – каждая точка пространства однозначно определяется набором трёх действительных чисел – координат;
  • единство метрических и топологических характеристик .

Общие свойства времени:

  • длительность;
  • единство прерывного и непрерывного - между двумя моментами времени как близко бы они не располагались всегда можно выделить третий;
  • необратимость – следствие второго Начала термодинамики или Закона сохранения энтропии;
  • одномерность – любые явления, происходящие в одних и тех же условиях, но в разное время, будут протекать одинаково.

13. Естественнонаучная картина мира: физическая картина мира (механическая, электромагнитная, современная – квантово-релятивистская).

Естественнонаучная картина мира (ЕНКМ) – это система важнейших принципов и законов, лежащих в основе окружающего нас мира.

ЛЕКЦИЯ 5 СОВРЕМЕННАЯ ФИЗИЧЕСКАЯ КАРТИНА МИРА

План лекции:

1. Ньютоновская концепция абсолютного пространства и времени. Законы движения

2. Законы сохранения

3. Начала термодинамики. Представления об энтропии

Вопросы пространства и времени всегда интересовали человеческое общество. Одна из концепций этих понятий идет от древних атоми­стов - Демокрита, Эпикура и др. Они ввели в научный оборот поня­тие пустого пространства и рассматривали его как однородное и бес­конечное.

В процессе создания общей картины мироздания Исаак Ньютон (1642-1726), конечно, также не мог обойти вопрос понятия простран­ства и времени.

По Ньютону, мир состоит из материи, пространства и времени. Эти три категории независимы друг от друга. Материя размещается в бес­конечном пространстве. Движение материи происходит в пространст­ве и времени. Ньютон разделял пространство на абсолютное и относи­тельное. Абсолютное пространство неподвижно, бесконечно. Относи­тельное - это часть абсолютного. Так же он классифицировал и время. Под абсолютным, истинным (математическим) временем он понимал время, которое течет всегда и везде равномерно, а относительное вре­мя, по Ньютону, есть мера продолжительности, которая существует в реальной жизни: секунда, минута, час, сутки, месяц, год. У Ньютона абсолютное время существует и длится равномерно само по себе, без­относительно к каким-либо событиям. Абсолютное пространство и аб­солютное время представляют собой вместилище всех материальных тел и пространств и не зависят ни от этих тел, ни от этих процессов, ни друг от друга.

Массу Ньютон определяет как количество материи и вводит поня­тие «пассивной силы» (силы инерции) и «активной силы», создающей движение тел.

Изучив и выявив закономерности движения, Ньютон таким обра­зом сформулировал его законы:

1-й закон. Всякому телу продолжать свое состояние покоя или равно­мерного прямолинейного движения, поскольку оно не принуждается приложенными силами изменять это состояние.

2-й закон. Изменению движения быть пропорциональным приложен­ной движущей силе и происходить по направлению той прямой, по ко­торой эта сила действует.

3-й закон. Действию всегда встречать равное противодействие, или воздействию двух тел друг на друга быть между собой равными и на­правленными в противоположные стороны.

В наше время знаменитые законы формулируются в более удобной форме:

1. Всякое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон называют также законом инерции.



2. Ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела.

3. Силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению.

Второй закон Ньютона нам известен в виде

F= т а, или а = F/m ,

где ускорение а, получаемое телом под действием силы F, обратно про­порционально массе тела т. Величина т называется инертной массой тела, она характеризует способность тела оказывать сопротивление действующей («активной») силе, то есть сохранять состояние покоя. Второй закон Ньютона справедлив только в инерциальных системах отсчета.

Первый закон можно получить из второго, так как в случае отсут­ствия воздействия на тело со стороны других сил ускорение также рав­но нулю. Однако первый закон рассматривается как самостоятельный закон, поскольку он утверждает существование инерциальных систем отсчета.

Инерциальные системы отсчета - это такие системы, в которых справедлив закон инерции: материальная точка, когда на нее не действуют никакие силы (или действуют силы, взаимно уравнове­шенные), находится в состоянии покоя или равномерного прямо­линейного движения .

Теоретически может существовать сколь угодно равноправных инерциальных систем отсчета, и во всех таких системах законы физи­ки одинаковы. Это утверждает принцип относительности Галилея (1636 г.).

Научное доказательство существования всемирного тяготения и ма­тематическое выражение описывающего его закона стало возможным только па основе открытых И. Ньютоном законов механики. Закон всемирного тяготения был сформулирован Ньютоном в труде «Мате­матические начала натуральной философии» (1687 г.).

Закон всемирного тяготения Ньютон формулирует в следующих тезисах: «тяготение существует для всех тел вообще и пропорциональ­но массе каждого из них», «тяготение к отдельным равным частицам тел обратно пропорционально квадратам расстояний мест к частицам». Этот закон известен в виде:

F =

где m 1 , m 2 - массы двух частиц, r - расстояние между ними, G - гра­витационная постоянная (в системе СИ G = 6,672 10 -11 м 2 /кг 2). Физический смысл гравитационной постоянной заключается в том, что она характеризует силу притяжения двух масс весом в 1 кг па расстоянии в 1 м.

Открыв закон всемирного тяготения, Ньютон смог дать ответ на вопрос, почему Луна обращается вокруг Земли и почему планеты дви­жутся вокруг Солнца. В каждом отдельном случае он мог рассчитать силу тяготения. Но как передается взаимодействие между массами, притягивающимися друг к другу, какова природа этой силы, Ньютон объяснить не мог.

В трудах Ньютона тяготение - это сила, которая действует на боль­ших расстояниях икак бы без какого-то материального посредника.

Это привело к понятию «дальнодействие». Природу «дальнодействия» Ньютон объяснить не мог. Он думал о каком-то материальном «агенте», с помощью которого осуществляется гравитационное взаи­модействие, но в решении этой проблемы он потерпел неудачу. Осно­вываясь на законе всемирного тяготения Ньютона, небесная механика допускает принципиальную возможность мгновенной передачи сигна­лов, что противоречит современной физике (общей теории относи­тельности). Поэтому буквальное понимание закона тяготения Ньюто­на с современной точки зрения недопустимо.

Ньютоновская механистическая парадигма в естествознании гос­подствовала более 200 лет, хотя и подвергалась критике по ряду пози­ций, в том числе и в понимании пространства и времени (Лейбниц, Гегель, Беркли и др.). В конце XIX и в начале XX в. возникли прин­ципиально новые научные представления об окружающей природе. Появились новые парадигмы: сначала релятивистская, а затем кванто­вая (см. ранее). В физическую картину мира полноправно вошла кон­цепция поля как материальной среды, связывающей частицы вещест­ва, все физические объекты материальногомира. В современной фи­зике известны четыре вида взаимодействия материальных объектов: электромагнитное, гравитационное, сильное и слабое (см. выше). Они ответственны за все процессы взаимодействия.

Однако если бесконечное изотропное пространство мыслится в картезианской программе как относительное, то у Ньютона оно получает совсем иную интерпретацию. Тут мы касаемся идеи абсолютного пространства, которое Ньютон принципиально отличает от пространства относительного и которое играет важную роль в его трактовке силы и инерции. Вводя понятия абсолютного пространства и времени, Ньютон вступает в полемику не только с картезианцами, но и с атомистами, и с Лейбницем: споры вокруг понятий абсолютного пространства и силы тяготения принимают очень острый характер в конце XVII - первой четверти XVIII в. Вместе с понятиями абсолютного пространства и времени Ньютон вводит также понятие абсолютного движения. Что же касается относительного движения, с которым одним только и имели дело картезианцы и атомисты, то его Ньютон допускает только на уровне обыденных представлений, которые в конечном счете имеют дело с кажущейся, а не истинной реальностью. "Время, пространство, место и движение, - пишет Ньютон, - составляют понятия общеизвестные. Однако необходимо заметить, что эти понятия обыкновенно относятся к тому, что постигается нашими чувствами. Отсюда происходят некоторые неправильные суждения, для устранения которых необходимо вышеприведенные понятия разделить на абсолютные и относительные, истинные и кажущиеся, математические и обыденные.

1. Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью. Относительное, кажущееся или обыденное время есть или точная, или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения, мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год.

II. Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным. Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное...

III. Место есть часть пространства, занимаемая телом, и по отношению к пространству бывает или абсолютным, или относительным...

IV. Абсолютное движение есть перемещение тела из одного абсолютного места в другое, относительное - из относительного в относительное же..."

Мы видим, что ньютоново понятие пространства решительно отличается как от картезианского, так и от лейбницева. В отличие от картезианцев, отождествлявших пространство с материей, Ньютон разделяет то и другое, утверждая реальное существование абсолютного пространства, своего рода "вместилища" всего, что существует в физическом мире. "Ньютон абсолютизирует это реальное существование (пространства и времени. - П.Г.) до самостоятельного, независимого от материальных вещей, бытия", - справедливо отмечают В.И. Свидерский и Г. Крёбер. Во-вторых, в отличие от Лейбница, не признававшего пространства как некоторой особой реальности, не зависимой от существующих вещей, Ньютон настаивал на необходимости различать пространство, так сказать, зависимое (относительное) и независимое (абсолютное). В известном смысле Ньютон сближается в этом вопросе с атомистами, которые признавали необходимым допустить пустоту, которая отличается от заполняющего мир вещества и таким образом тоже является как бы вместилищем материи. Однако, признавая пустоту, атомисты, в отличие от Ньютона, не допускали возможности дальнодействия, отождествляя пустоту как бы с небытием, подобно античным атомистам. Как и картезианцы, атомисты XVII-XVIII вв. признавали только непосредственную передачу движения посредством толчка (столкновения атомов), и в этом смысле тоже были противниками ньютонианцев. Если можно так выразиться, пустота у атомистов была синонимом отсутствия, в то время как у Ньютона абсолютное пространство было синонимом присутствия, - но не присутствия материи, а присутствия чего-то высшего, некоторого метафизического (сверхфизического) начала, которое и делает возможным тяготение как действие на расстоянии.

Абсолютное пространство и время у Ньютона необходимы для определения важнейшего понятия его физики - понятия силы. Сила в научной программе Ньютона есть причина реального движения, а не движения, так сказать, математического. А реальное движение - это движение в абсолютном пространстве. Как подчеркивает М. Джеммер, "для Ньютона сила не есть опустошенное понятие современной физики. Она означает не математическую абстракцию, а некоторую абсолютно данную действительность, реальное физическое бытие". Иными словами, ньютоново понятие силы не является функциональным, а остается, так сказать, субстанциональным. То тело, которое движется в абсолютном пространстве, т.е. для которого абсолютное пространство является системой координат, обладает абсолютным движением, и соответственно изменение состояния такого тела требует приложения силы. "Истинное абсолютное движение не может ни произойти, ни измениться иначе, как от действия сил, приложенных непосредственно к самому движущемуся телу, тогда как относительное движение тела может быть и произведено и изменено без приложения сил к этому телу; достаточно, чтобы силы были приложены к тем телам, по отношению к которым это движение определяется". Поскольку относительное движение может изменяться независимо от того, изменяется ли при этом движение абсолютное, и, напротив, может сохраняться, в то время как абсолютное движение изменится, то абсолютное движение, по Ньютону, не зависит от тех соотношений, которыми определяется движение относительное.

Отсюда очевидно, что мы не можем судить, какого рода движением наделено тело - абсолютным или относительным, ибо у нас нет средств определить, в каком пространстве оно движется: ведь абсолютное пространство мы чувственно воспринять не можем. Однако тут, по убеждению Ньютона, есть одно исключение: вращательное движение, проявления которого позволяют судить о том, прилагается ли реальная сила к данному телу или нет. "Проявления, которыми различаются абсолютное и относительное движения, состоят в силах стремления удалиться от оси вращательного движения, ибо в чисто относительном вращательном движении эти силы равны нулю, в истинном же и абсолютном они больше и меньше, сообразно количеству движения". Для подтверждения своей мысли Ньютон приводит знаменитый пример с ведром, наполненным водой, которое подвешено на веревке и с ее помощью приведено во вращательное движение. Вначале, хотя ведро вращается вокруг своей оси, вода в нем сохраняет плоскую поверхность, и это означает, по Ньютону, что она движется относительно - в данном случае относительно стенок сосуда. Но затем постепенно поверхность воды принимает форму воронки, и в этот момент она начинает двигаться абсолютным движением, о чем свидетельствует стремление воды удалиться от оси вращения. В этот момент, подчеркивает Ньютон, вода устанавливается неподвижно в отношении стенок ведра, зато движется в абсолютном пространстве.

Истинное, или абсолютное, движение тела может быть, по Ньютону, только одно, в то время как относительных движений может быть как угодно много - в зависимости от того, какое из окружающих тел принять за точку отсчета. Но хотя распознать истинное движение и нелегко, тем не менее Ньютон считает это возможным: эксперимент с вращающимся ведром, а также с двумя шарами, соединенными нитью и вращающимися вокруг общего центра тяжести, позволяет по проявлениям делать выводы о том, с каким именно движением мы в данном случае имеем дело. Это - важнейшая задача механики Ньютона, о чем он сам говорит весьма определенно: "Нахождение... истинных движений тел по причинам, их производящим, по их проявлениям и по разностям кажущихся движений и, наоборот, нахождение по истинным или кажущимся движениям их причин и проявлений излагаются подробно в последующем. Именно с этою-то целью и составлено предлагаемое сочинение".

Три основных закона движения, сформулированных Ньютоном, имеют в качестве своей философской предпосылки его учение об абсолютном пространстве, времени и движении. Ньютон как творец научной программы выступает, как видим, не просто в качестве великого экспериментатора и прекрасного математика, как это нередко высказывалось историками науки, особенно позитивистской ориентации: он не в меньшей степени мыслит и как философ, что и дает ему возможность создать систему теоретических и методологических принципов, отменивших картезианскую научную программу. "Доказать существование истинного движения и абсолютного пространства - такова программа "Начал", - пишет М. Джеммер. - Все успехи и открытия Ньютона в области физики имеют, по его мнению, подчиненное значение по сравнению с философским понятием абсолютного пространства".

Вводя абсолютное пространство, Ньютон тем самым вводит в физику ту самую "гипотезу", которая не может быть доказана одними только средствами механики, но, напротив, представляет собой философско-теоретическую предпосылку, на которой держится физическая теория. Так, первый закон механики Ньютона гласит: "Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние". Равномерное прямолинейное движение, т.е. движение по инерции, требует некоторой системы отсчета, или, как мы говорим сегодня, инерционной системы. Такая инерционная система у Ньютона - абсолютное пространство. При этом, однако, Ньютон знает, что, вообще говоря, таких инерционных систем, т.е. систем отсчета, может быть много, и Ньютон формулирует эту свою мысль в виде V следствия законов движения: "Относительные движения друг по отношению к другу тел, заключенных в каком-либо пространстве, одинаковы, покоится ли это пространство или движется равномерно и прямолинейно без вращения". Однако в отличие от Декарта и Гюйгенса, которые считали все инерционные системы в принципе равноправными, поскольку они рассматривали всякое движение как относительное, Ньютон считал истинным только движение, совершающееся в абсолютном пространстве. О том, что не все инерционные системы в физике Ньютона равноправны, свидетельствуют и те допущения, на которых базируется его "Система мира". Вот первое из этих допущений: "Центр системы мира находится в покое. Это признается всеми, ибо одни принимают находящимися в этом центре и покоящимися Землю, другие - Солнце". Таким мировым центром Ньютон считает общий центр тяжести Земли, Солнца и всех планет, который именно как центр мира не может двигаться, хотя Солнце и находится в постоянном движении, но оно, по Ньютону, никогда не удаляется значительно от общего с планетами центра тяжести.

Поскольку планеты, а также и Солнце, взаимно тяготея друг к другу, находятся в постоянном движении, то их центры именно в силу своей подвижности не могут быть, как убежден Ньютон, центром мира: последний должен быть в покое. "Если бы в этом центре помещалось то тело, к которому все тела наиболее тяготеют... то такое преимущество дo лжно бы предоставить Солнцу. Но так как Солнце само движется, то надо бы избрать такую покоящуюся точку, от которой центр Солнца менее всего отходит..."

Разумеется, утверждение Ньютона о том, что центр мира находится в покое, невозможно было подтвердить никакими экспериментами. Это утверждение полностью держится только на его убеждении в существовании абсолютного пространства. При этом характерно, что Ньютон не обращается для определения неподвижного центра мира к неподвижным звездам, которые служили точкой отсчета в астрономической системе древности и средних веков вплоть до Коперника. Хотя сам Ньютон считал звезды неподвижными, тем не менее центр мира он ищет как центр тяжести планетно-солнечной системы, т.е. определяет его динамически.

При этом нельзя не отметить одного существенного противоречия, связанного с понятием абсолютного пространства Ньютона. В самом деле, если это пространство бесконечно, то в нем, как это в свое время показал Аристотель, а в новое время продемонстрировали Николай Кузанский и Джордано Бруно, не может быть центра: понятие центра предполагает как угодно большое, но конечное тело. Сам Ньютон не замечал этого противоречия, но, как можно видеть в его "Системе мира", изложенной в третьей части "Начал", он реально имеет дело не с бесконечно большим пространством, а с тем пространством, которое простирается вплоть до неподвижных звезд. Более того, космическая механика Ньютона в сущности есть динамика солнечной системы, и именно в ней ищет Ньютон центр мира.

Мы потому так подробно остановились на философско-теоретических предпосылках ньютоновых "Начал", что в этом вопросе существуют различные точки зрения. Так, например, невозможно согласиться с Т. Куном, который считает несущественным для научной программы Ньютона его понятия абсолютного пространства и абсолютного движения. Рассматривая кризис в физике конца XIX в., Кун пишет: "Один источник кризиса можно проследить в конце XVII в., когда ряд натурфилософов, особенно Лейбниц, критиковали Ньютона за сохранение, хотя и в модернизированном варианте, классического понятия абсолютного пространства. Они довольно точно, хотя и не всегда в полной мере, смогли показать, что абсолютное пространство и абсолютное движение не несли какой бы то ни было нагрузки в системе Ньютона вообще. Больше того, они высказали догадку, что полностью релятивистское понятие пространства и движения, которое и было открыто позднее, имело бы большую эстетическую привлекательность". Во-первых, здесь Кун говорит о "сохранении у Ньютона, хотя и в модернизированном виде, классического понятия абсолютного пространства". А между тем понятие пространства как абсолютного в том значении, которое ему придает Ньютон, мы не встречаем ни в древней, ни в средневековой науке, ни даже в науке эпохи Возрождения, за исключением только представителей Кэмбриджской школы неоплатоников, старших современников Ньютона. Поэтому неясно, почему Кун полагает, что это понятие "классическое" и что Ньютон его сохранил, так сказать, в обновленном, модернизированном виде. Ни у Коперника, ни у Бруно, ни у Кеплера, ни у Декарта, а тем более Лейбница нет того понятия пространства, что у Ньютона. Вероятно, Кун, называя абсолютное пространство "классическим", употребляет ту характеристику его, которую оно получило в физике XIX в. Но тогда непонятно, почему Ньютон его "сохранил"- он в сущности впервые ввел его в систему механики. Во-вторых, Кун необоснованно заявляет, что "абсолютное пространство и абсолютное движение не несли какой бы то ни было нагрузки в системе Ньютона вообще". Он, стало быть, соглашается с критикой этих ньютоновских понятий со стороны Лейбница, Гюйгенса, картезианцев, а также, по-видимому, подразумевает то развитие, которое ньютонова механика получила впоследствии, особенно в конце XVIII-XIX в., когда ученые все больше отказывались от ньютоновых абсолютов и рассматривали движение как относительное. Но по отношению к самому Ньютону такое утверждение является неверным: оно носит неисторический характер. Ибо историческое рассмотрение научной программы Ньютона свидетельствует как раз о противном. Что же касается оппонентов Ньютона в XVII-первой трети XVIII в., то дальнейшее развитие механики действительно подтвердило их правоту, но отнюдь не показало, что абсолютные пространство и движение не имели нагрузки в системе самого Ньютона.