Современная теория множеств. Парадоксы теории множеств и их философская интерпретация. Порядок выполнения операций

Лекция 12: Основные понятия теории множеств

Рассмотрение системы как совокупности элементов дает возможность привлечь для ее математического описания аппарат теории множеств. При этом в ряде важных случаев связи между элементами удобно описываются с помощью аппарата математической логики.

Понятие множества — является одним из тех фундаментальных понятий математики, которым трудно дать точное определение, используя элементарные понятия. Поэтому ограничимся описательным объяснением понятия множества.

Множеством называется совокупность определенных вполне различаемых объектов, рассматриваемых как единое целое. Создатель теории множеств Георг Кантор давал следующее определение множества — «множество есть многое, мыслимое нами как целое».

Отдельные объекты, из которых состоит множество, называются элементами множества.

Множества принято обозначать большими буквами латинского алфавита, а элементы этих множеств — маленькими буквами латинского алфавита. Множества записываются в фигурных скобках { }.

Принято использовать следующие обозначения:

  • a ∈ X — «элемент a принадлежит множеству X»;
  • a ∉ X — «элемент a не принадлежит множеству X»;
  • ∀ — квантор произвольности, общности, обозначающий «любой», «какой бы не был», «для всех»;
  • ∃ — квантор существования: ∃y ∈ B — «существует (найдется) элемент y из множества B»;
  • ∃! — квантор существования и единственности: ∃!b ∈ C — «существует единственный элемент b из множества C»;
  • : — «такой, что; обладающий свойством»;
  • → — символ следствия, означает «влечет за собой»;
  • ⇔ — квантор эквивалентности, равносильности — «тогда и только тогда».

Множества бывают конечные и бесконечные . Множества называются конечным , если число его элементов конечно, т.е. если существует натуральное число n, являющееся числом элементов множества. А={a 1 , a 2 ,a 3 , ..., a n }. Множество называется бесконечным , если оно содержит бесконечное число элементов. B={b 1 ,b 2 ,b 3 , ...}. Например, множество букв русского алфавита — конечное множество. Множество натуральных чисел — бесконечное множество.

Число элементов в конечном множестве M называется мощностью множества M и обозначается |M|. Пустое множество — множество, не содержащее ни одного элемента — ∅. Два множества называются равными , если они состоят из одних и тех же элементов, т.е. представляют собой одно и тоже множество. Множества не равны X ≠ Y, если в Х есть элементы, не принадлежащие Y, или в Y есть элементы, не принадлежащие Х. Символ равенства множеств обладает свойствами:

  • Х=Х; — рефлексивность
  • если Х=Y, Y=X — симметричность
  • если X=Y,Y=Z, то X=Z — транзитивность.

Согласно такого определения равенства множеств мы естественно получаем, что все пустые множества равны между собой или что то же самое, что существует только одно пустое множество.

Подмножества. Отношение включения.

Множество Х является подмножеством множества Y, если любой элемент множества Х ∈ и множеству Y. Обозначается X⊆Y.

Если необходимо подчеркнуть, что Y содержит и другие элементы, кроме элементов из Х, то используют символ строгого включения ⊂: X⊂Y. Связь между символами ⊂ и ⊆ дается выражением:

X⊂Y ⇔ X⊆Y и X≠Y

Отметим некоторые свойства подмножества, вытекающие из определения:

  1. X⊆Х (рефлексивность);
  2. → X⊆Z (транзитивность);
  3. ∅ ⊆ M. Принято считать, что пустое множество является подмножеством любого множества.

Исходное множество А по отношению к его подмножествам называется полным множеством и обозначается I.

Любое подмножество А i множества А называется собственным множеством А.

Множество, состоящие из всех подмножеств данного множества Х и пустого множества ∅, называется булеаном Х и обозначается β(Х). Мощность булеана |β(Х)|=2 n .

Счетное множество — это такое множество А, все элементы которого могут быть занумерованы в последовательность (м.б. бесконечную) а 1 , а 2 , а 3 , ..., а n , ... так, чтобы при этом каждый элемент получил ишь один номер n и каждое натуральное число n было бы в качестве номера дано одному и лишь одному элементу нашего множества.

Множество, эквивалентное множеству натуральных чисел, называется счетным множеством.

Пример. Множество квадратов целых чисел 1, 4, 9, ..., n 2 представляет собой лишь подмножество множества натуральных чисел N. Множество является счетным, так как приводится во взаимно однозначные соответствия с натуральным рядом путем приписывания каждому элементу номера того числа натурального ряда, квадратом которого он является.

Существует 2 основных способа задания множеств.

  • перечислением (X={a,b}, Y={1}, Z={1,2,...,8}, M={m 1 ,m 2 ,m 3 ,..,m n });
  • описанием — указывается характерное свойства, которым обладают все элементы множества.

Множество полностью определено своими элементами.

Перечислением можно задать только конечные множества (например, множество месяцев в году). Бесконечные множества можно задать только описанием свойств его элементов (например, множество рациональных чисел можно задать описанием Q={n/m, m, n∈Z, m≠0}.

Способы задания множества описанием:

а) заданием порождающей процедуры с указанием множества (множеств), которое пробегает параметр (параметры) этой процедуры — рекурсивный, индуктивный.

X={x: x 1 =1, x 2 =1, x k+2 =x k +x k+1 , k=1,2,3,...} — мн-во чисел Фибониччи.

{мн-во элементов х, таких, что х 1 =1,х 2 =1 и произвольное х k+1 (при к=1,2,3,...) вычисляется по формуле х k+2 =х k +х k+1 } или Х= Расширения

Основная статья: Теория комплектов

Теория комплектов - естественное расширение (обобщение) теории множеств. Подобно множеству, комплект - набор элементов из некоторой области. Отличие от множества: комплекты допускают присутствие нескольких экземпляров одного и того же элемента (элемент входит от нуль раз, то есть, не входит в комплект, до любого заданного числа раз) . (см. например, Мультисочетания).

Приложения

См. также

Примечания

Литература

  • К. Куратовский , А. Мостовский Теория множеств / Перевод с английского М. И. Кратко под редакцией А. Д. Тайманова. - М .: Мир, 1970. - 416 с.
  • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.
  • А. Френкель, И. Бар-Хиллел Основания теории множеств / Перевод с английского Ю. А. Гастева под редакцией А. С. Есенина-Вольпина . - М .: Мир, 1966. - 556 с.

Wikimedia Foundation . 2010 .

  • Математический анализ
  • Подмножество

Смотреть что такое "Теория множеств" в других словарях:

    ТЕОРИЯ МНОЖЕСТВ - ТЕОРИЯ МНОЖЕСТВ, раздел математики, начало которому было положено работами Джорджа БУЛЯ в области математической логики, но в настоящее время больше связанный с изучением МНОЖЕСТВ абстрактных или реальных объектов, а не с логическими… … Научно-технический энциклопедический словарь

    теория множеств - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN set theory … Справочник технического переводчика

    ТЕОРИЯ МНОЖЕСТВ - теория, в к рой изучаются множества (классы) элементов произвольной природы. Созданная прежде всего трудами Кантора (а также Р. Дедекинда и К. Вейерштрасса), Т. м. к концу 19 в. стала основой построения сложившихся к тому времени математич.… … Философская энциклопедия

    ТЕОРИЯ МНОЖЕСТВ - раздел математики, исследующий общие свойства множеств. Множеством называется любое объединение в одно целое некоторых определенных и различных между собой объектов нашего восприятия или мысли. В Т. м. изучаются общие свойства различных операций… … Энциклопедический словарь по психологии и педагогике

    Теория множеств Кантора - … Википедия

    Теория множеств Цермело-Френкеля - … Википедия

New Page 1

Математический анализ для чайников. Урок 1. Множества.

Понятие множества

Множество - это совокупность некоторых объектов. Какие могут быть множества? Во первых, конечные или бесконечные. Например, множество спичек в коробке - это конечное множество, их можно взять и сосчитать. Количество песчинок на пляже сосчитать гораздо труднее, но, в принципе, возможно. И это количество выражается каким то конечным числом. Так что множество песчинок на пляже тоже конечно. А вот множество точек на прямо это множество бесконечное. Так как во первых, прямая сама по себе бесконечная и на ней можно поставить сколько угодно точек. Множество точек отрезка прямой тоже бесконечное. Потому что теоретически точка может быть сколь угодно маленькая. Конечно, мы физически не сможем нарисовать точку, размером, например, меньше размера атома, но, с точки зрения математики точка не имеет размера. Ее размер равен нулю. А что получается, если разделить на нуль какое то число? Правильно, бесконечность. И хотя множество точек на прямой и на отрезке стремится к бесконечности, это не одно и тоже. Множество - это не количество чего то там, а совокупность каких либо объектов. И равными считаются только те множества, которые содержат абсолютно одинаковые объекты. Если в одном множество содержит те же объекты, что и другое множество, но плюс еще один какой нибудь "левый" объект, то это уже не равные множества.

Рассмотрим пример. Пусть у нас имеется два множества. Первое - совокупность все точек на прямой. Второе - совокупность всех точек на отрезке прямой. Почему они не равны? Во первых, отрезок и прямая могут даже не пересекаться. Тогда они уж точно не равны, так как содержат в себе абсолютно разные точки. Если они пересекаются, то у них только одна общая точка. Все остальные так же разные. А если отрезок лежит на прямой? Тогда все точки отрезка являются и точками прямой. Но не все точки прямой являются точками отрезка. Так что и в этом случае множества нельзя считать равными (одинаковыми).

Каждое множество задается правилом, которое однозначно определяет, принадлежит элемент к этому множеству или нет. Какие могут быть эти правила? Например, если множество конечное, можно тупо перечислить все его объекты. Можно задать диапазон. Например, все целые числа от 1 до 10. Это будет тоже конечное множество, но тут мы не перечисляем его элементы, а формулируем правило. Или неравенство, к примеру, все числа, больше 10. Это будет уже бесконечное множество, поскольку нельзя назвать самое большое число - какие бы число мы не называли, всегда есть это число плюс 1.

Как правило, множества обозначаются прописными буквами латинского алфавита A, B, C и так далее. Если множество состоит из конкретных элементов и мы хотим задать его списком этих элементов, то мы можем заключить этот список в фигурные скобки, например A={a, b, c, d}. Если a является элемент множества A, то это записывают следующим образом: a Î A . Если же a не является элементом множества A, то пишут a Ï A. Одним из важных множеств является множество N всех натуральных чисел N={1,2,3,...,} . Существует также специальное, так называемое пустое множество, которое не содержит ни одного элемента. Пустое множество обозначается символом Æ .

Определение 1 (определение равенства множеств). Множества А и B равны, если они состоят из одних и тех же элементов, то есть, если из x Î A следует x Î B и обратно, из x Î B следует x Î A.

Формально равенство двух множеств записывается следующим образом:

(А=В ) := " x (( x Î A ) Û (x Î B )),

Это означает, что для любого объекта x соотношения x Î A и x Î B равносильны.

Здесь " – квантор всеобщности (" x читается как "для каждого x ").

Определение 2 (определение подмножества). Множество А является подмножеством множества В , если любое х принадлежащее множеству А , принадлежит множеству В. Формальное это можно представить в виде выражения:

(A Ì B ) := " x ((x Î A ) Þ (x Î B ))

Если A Ì B, но A ¹ B, то A – собственное подмножество множества В. В качестве примера можно привести опять же прямую и отрезок. Если отрезок лежит на прямой, то множество его точек являются подмножеством точек этой прямой. Или, другой пример. Множество целых чисел, которые делятся без остатка на 3, является подмножеством множества целых чисел.

Замечание. Пустое множество является подмножеством любого множества.

Операции над множествами

Над множествами возможны следующие операции:

Объединение. Суть этой операции состоит в том, что бы два множества объединить в одно, содержащее элементы каждого из объединяемых множеств. Формально это выглядит так:

C=A È B: = {x:x Î A или x Î B }

Пример. Решим неравенство | 2 x + 3 | > 7.

Из него следует либо неравенство 2x+3 >7, для 2x+3 ≥0, тогда x>2

либо неравенство 2x+3 <-7, для 2x+3 <0, тогда x<-5.

Множеством решений данного неравенство является объединения множеств (-∞,-5) È (2, ∞).

Давайте проверим. Посчитаем значение выражение | 2 x + 3 | для нескольких точек, лежащих и не лежащих в данном диапазоне:

x | 2 x + 3 |
-10 17
-6 9
-5 7
-4 5
-2 1
0 3
1 5
2 7
3 9
5 13

Как видим, все решено правильно (красным обозначены пограничные диапазоны).

Пересечение. Пересечением называется операция создания нового множества из двух, содержащих элементы, которые входят в оба этих множества. Что бы изобразить это наглядно, давайте представим, что у нас есть два множества точек на плоскости, а именно фигура A и фигура B. Их пересечение обозначает фигуру C - это и есть результа операции пересечения множеств:

Формально операция пересечения множеств записывается так:

C=A Ç B := {x: x Î A и x Î B }

Пример. Пусть у нас есть множество Тогда C=A Ç B = {5,6,7}

Вычитание. Вычитание множеств - это исключение из вычитаемого множества тех элементах, которые содержатся в вычитаемом и вычитателе:

Формально вычитание множества записывается так:

A \ B: = {x:x Î A и x Ï B }

Пример. Пусть у нас есть множество A={1,2,3,4,5,6,7}, B={5,6,7,8,9,10}. Тогда C=A \ B = { 1,2,3,4}

Дополнение. Дополнение - это унарная операция (операция не над двумя, а над одним множеством). Эта операция является результатом вычитания данного множества из полного универсального множества (множества, которое включает в себя все остальные множества).

A : = {x:x Î U и x Ï A} = U \ A

Графически это можно изобразить в виде:

Симметричная разность. В отличии от обычной разности при симметричной разности множеств элементы остаются только те, что присутствуют либо в одном, либо в другом множестве. Или, говоря простым языком, из двух множеств создается, но из него исключаются те элементы, которые есть и в том и в другом множестве:

Математически это можно выразить так:

A D B:= (A \ B ) È (B \ A ) = (A È B ) \ (A Ç B )

Свойства операций над множествами.

Из определений объединения и пересечения множеств следует, что операции пересечения и объединения обладают следующими свойствами:

  1. Коммутативность.

A È B=B È A
A
Ç B=B Ç A

  1. Ассоциативность.

(A È B ) È C=A È (B È C )
(A Ç B ) Ç C= A Ç (B Ç C )